CXC MATH PAST PAPER JAN 2021 Paper 2




LIST OF FORMULAE

Volume of a prism V = Ah where A is the area of a cross-section and h is the perpendicular

length.

Volume of a cylinder V = πr

2

h where r is the radius of the base and h is the perpendicular height.

Volume of a right pyramid V  = — Ah where A is the area of the base and h is the perpendicular height.

Circumference C = 2Ï€r where r is the radius of the circle.

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 4

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

Arc length S = —— × 2Ï€r where θ is the angle subtended by the arc, measured in

degrees.

Area of a circle A = πr

Area of a sector A = —— × Ï€r

where r is the radius of the circle.

2

 where θ is the angle of the sector, measured in degrees.

Area of a trapezium A = — (a + b) h where a and b are the lengths of the parallel sides and h

is the perpendicular distance between the parallel sides.

Roots of quadratic equations If ax

2

 + bx + c = 0,

 then  x  =  —————— 

Trigonometric ratios sin θ  =  ————————— 

 cos θ  =  —————————

 tan θ  =  —————————

Area of a triangle Area of Δ = — bh where b is the length of the base and h is the perpendicular

height.

 Area of Δ ABC  =  — ab sin C

 Area of Δ ABC  =  √ s (s – a) (s – b) (s – c)  

 where s  =  ————

Sine rule ——    =    ——    =    ——

Cosine rule a

a

sin A

2

1

3

θ

360

θ

360

1

2

  =  b

2

–b + √ b

  +  c

1

2

2

 – 4ac

2a

2

length of opposite side

length of hypotenuse

length of adjacent side

length of hypotenuse

length of opposite side

length of adjacent side

a + b + c

2

b

sin B

1

2

c

sin C

  –  2bc cos A

SECTION I

Answer ALL questions.

All working must be clearly shown.


1. (a) (i) Using a calculator, or otherwise, calculate the EXACT value of

    1

4

7

 + 

2

3

 – 1

5

6

.

   .................................................................................................................................

(2 marks)

  (ii) Write the value of

√ 27

3

——

9

2

 as a fraction in its LOWEST terms.

   .................................................................................................................................

(2 marks)

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 5

 (b) The thickness of one sheet of cardboard is given as 485 × 10

 mm.  A construction worker

uses 75 sheets of the cardboard, stacked together, to insulate a wall.

  (i) Show that the exact thickness of the insulation is 363.75 mm.

    

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

–2

Page 6

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

   .................................................................................................................................

(1 mark)

  (ii) Write the thickness of the insulation

   a) correct to 2 signiicant igures

    ........................................................................................................................

(1 mark)

   b) correct to 1 decimal place

    ........................................................................................................................

(1 mark)

   c) in standard form.

    ........................................................................................................................

(1 mark)

 (c) Marko is on vacation in the Caribbean.  He changes 4500 Mexican pesos (MXN) to          

Eastern Caribbean dollars (ECD).  He receives 630 ECD.

  Complete the statement below about the exchange rate.

  1 ECD = ................................. MXN (1 mark)

    Total 9 marks

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 7

2. (a) Factorize the following expression completely. 

   12n

2

 – 4mn

  ..............................................................................................................................................

(1 mark)

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 8

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

 (b) (i) Show that

x

1 – x

——

 – 4x =

x(4x – 3)

1 – x

————

.

   .................................................................................................................................

(2 marks)

  (ii) Hence, solve the equation 

    

x

1 – x

——

 – 4x = 0.

   .................................................................................................................................

(2 marks)

 (c) Make v the subject of the formula p = √ 5 + vt .

  ..............................................................................................................................................

(2 marks)

 (d) The distance needed to stop a car, d, varies directly as the square of the speed, s, at which

it is travelling.  A car travelling at a speed of 70 km/h requires a distance of 40 m to make

a stop.  What distance is required to stop a car travelling at 80 km/h?

  ..............................................................................................................................................

(2 marks)

    Total 9 marks

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 9

3. (a) The diagram below shows two pentagons, P and Q, drawn on a grid made up of squares. 

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 10

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

  (i) Select the correct word from the following list to complete the statement below.

 

      opposite          relected          congruent          translated   

 

   Pentagon P is ...................................................................... to Pentagon Q.

(1 mark)

  (ii) Give the reason for your choice in (a) (i).

   .................................................................................................................................

   .................................................................................................................................

   .................................................................................................................................

(1 mark)

 (b) The diagram below, not drawn to scale, shows the pentagon VWXYZ.  In the pentagon,

YZ is parallel to XW and YX is parallel to VW.  Angle XYZ = 114° while angle VZY = 98°. 

   Determine the value of

  (i) angle WXY

   .................................................................................................................................

(1 mark)

  (ii) angle ZVW.

   .................................................................................................................................

(2 marks)

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 11

 (c) The letter ‘A’ and a point C(6, 6) are shown on the grid below.

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 12

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

  On the diagram, draw accurately, EACH of the following transformations.

  (i) The enlargement of letter ‘A’ by scale factor 2, about centre, C(6, 6). (2 marks)

  (ii) The translation of letter ‘A’ using the vector T =

–3

   

. (2 marks)

 

2

 Total 9 marks

4. (a) The function f is deined as

   f : x → 3 – 2x.

  (i) The diagram below shows the mapping diagram of the function, f.  Determine the

value of a.

   a =  ..........................................................................................................................

   .................................................................................................................................

(1 mark)

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 13

  (ii) Determine, in their simplest form, expressions for

   a) the inverse of the function f,  f 

–1

 (x)

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 14

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

    ........................................................................................................................

(1 mark)

   b) the composite function  f 

2

 (x).

    ........................................................................................................................

(2 marks)


  (iii) State the value of f f 

–1

 (–2).

   .................................................................................................................................

(1 mark)

 (b) (i) Using a ruler, draw the lines x =

1

  (ii) On the grid, label as R, the region where x >

1

2

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 15

, y = x and x + y = 5, on the grid below.

(3 marks)

2

, y > x and x + y < 5. (1 mark)


    Total 9 marks

5. (a) Sixty students took an algebra test, which comprised 15 multiple choice questions.  The

number of correct answers that each student obtained is recorded in the table below.


Number of 

Correct Answers

Number of

Students

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 16

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

  Using the table, determine

8 6

9 14

10 2

11 6

12 2

13 11

14 9

15 10

  (i) the number of students who had exactly 13 correct answers

   .................................................................................................................................

(1 mark)

  (ii) the modal number of correct answers

   .................................................................................................................................

(1 mark)

  (iii) the median number of correct answers

    .................................................................................................................................

(1 mark)

  (iv) the probability that a student chosen at random had at least 12 correct answers.

   ..................................................................................................................................

(1 mark)

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 17

 (b) A group of students wrote a Physics examination.  Each of the students achieved a Grade

I, II, III or IV.  The pie chart below shows the results.

 

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 18

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

   Thirty-nine students achieved a Grade III.

  (i) Determine the TOTAL number of students who wrote the examination.

 

   .................................................................................................................................

(2 marks)

  (ii) The ratio of the number of students who achieved a Grade I, II or IV is 2:4:3.  A

student passed the examination if he/she achieved a Grade I, II or III. 

   How many students passed the examination? 

 

   .................................................................................................................................

(2 marks)

  (iii) Determine the value of the angle for the sector representing Grade I in the pie

chart.

 

   .................................................................................................................................

(1 mark)

    Total 9 marks

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 19

6. In this question, take π to be

22

7

.

 The diagram below shows a rectangular tank, with base 50 cm by 40 cm, that is used to store

water.  The tank is illed with water to a depth of 15 cm. 

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 20

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

40 cm

 (a) Calculate the volume of water in the tank.

 

50 cm

15 cm

  ..............................................................................................................................................

(2 marks)

 (b) The cylindrical container shown in the diagram below is used to fetch more water to ill

the rectangular tank.  The container, which is completely illed with water, has a radius of

20 cm and a height of 21 cm. 

 All the water in this container is added to the water in the rectangular tank. Calculate the 

TOTAL volume of water that is now in the rectangular tank.

  ..............................................................................................................................................

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 21

(3 marks)

 (c) Show that the new depth of water in the rectangular tank is 28.2 cm.

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 22

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

 

  ..............................................................................................................................................

(2 marks)

 (d) The vertical height of the rectangular tank is 48 cm.  Determine how many more cylindrical

containers of water must be poured into the rectangular tank for it to be completely illed. 

 

  .............................................................................................................................................

(2 marks)

    Total 9 marks

7. The diagrams below show a sequence of igures made up of circles with dots.  Each igure has one

dot at the centre and 4 dots on the circumference of each circle.  The radius of the irst circle is

one unit.  The radius of each new circle is one unit greater than the radius of the previous circle. 

Except for the irst igure, a portion of each of the other igures is shaded.

Figure 1 Figure 2 Figure 3 Figure 4

 (a)  Complete the rows in the table below for Figure 5 and Figure n.

Figure

Number

Number of

Dots

Area of

Outer

(Largest)

Circle

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Area of

Shaded

Region

1 5 π π 2π

2 9 4Ï€ 3Ï€ 6Ï€

3 13 9Ï€ 5Ï€ 12Ï€

4 17 16Ï€ 7Ï€ 20Ï€

Total Length of

Circumference

of all Circles

5 _________ 25Ï€ _________ _________

 (i) (3 marks)

n

_________ _________ _________ _________

 (ii) (4 marks)

Page 23

 (b) Determine the value of n, when the number of dots in Figure n is 541. 

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 24

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

 

  ..............................................................................................................................................

(2 marks)

 (c) Write down, in terms of p and Ï€, the area of the LARGEST circle in Figure 3p. 

 

  ..............................................................................................................................................

(1 mark)


    Total 10 marks

SECTION II

Answer ALL questions.

ALGEBRA, RELATIONS, FUNCTIONS AND GRAPHS

8. (a) The straight line graph of  x = 5 – 3y intersects the x-axis at P and the y-axis at Q.

  (i) Determine the coordinates of P and Q.

   P (..........,   ..........)      Q (..........,    ..........) (2 marks)

  (ii) Calculate the length of PQ, giving your answer to 2 decimal places.

   .................................................................................................................................

(2 marks)

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 25

  (iii) R is the midpoint of PQ.  Determine the coordinates of R.

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 26

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

   .................................................................................................................................

(1 mark)

 (b) The functions f and g are deined as follows

   f : x → 5 – x  and  g : x → x

2

 – 2x – 1.

The graphs of f(x) and g(x) meet at points M and N.  Determine the coordinates of the

points M and N.

  ..............................................................................................................................................

(4 marks)

 (c) Monty is cycling at 12 metres per second (m/s).  After 4.5 seconds he starts to decelerate

and after a further 2.5 seconds he stops.  The speed–time graph is shown below.

  Calculate

  (i) the constant deceleration 

   .................................................................................................................................

(1 mark)

  (ii) Monty’s average speed over the 7 seconds.

   .................................................................................................................................

(2 marks)

    Total 12 marks

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 27

GEOMETRY AND TRIGONOMETRY

9. (a) In the diagram below, A, B, C and D are points on the circumference of a circle, with centre

O.  AOC and BOD are diameters of the circle.  AB and DC are parallel.

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 28

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

 

  (i) State the reason why angle ABC is 90°.

   .................................................................................................................................

   .................................................................................................................................

   .................................................................................................................................

   .................................................................................................................................

(1 mark)

  (ii) Determine the value of EACH of the following angles.  Show detailed working

where necessary and give a reason to support your answer.

  

    a)  Angle BAC

    Reason

    ...........................................................................................................................

    ...........................................................................................................................

    ...........................................................................................................................

    ...........................................................................................................................

    (2 marks)


 

   b) Angle q

    Reason

    ...........................................................................................................................

    ...........................................................................................................................

    ...........................................................................................................................

    ...........................................................................................................................

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 29

(2 marks)

  (iii) Calculate the value of angle r.

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 30

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

 (b) From a harbour, H, the bearing of two buoys, S and Q, are 185° and 311° respectively.  Q

is 5.4 km from H while S is 3.5 km from H.


  (i) On the diagram below, which shows the sketch of this information, insert the value 

of the marked angle, QHS. (1 mark)

Q

S

H

N

185°

(1 mark)

  (ii) Calculate QS, the distance between the two buoys.

   .................................................................................................................................

(2 marks)

  (iii) Calculate the bearing of S from Q.

   .................................................................................................................................

(3 marks)

    Total 12 marks

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 31

10. (a) Given the matrix W =

    3 6

VECTORS AND MATRICES

  –2 5

 , determine

  (i) the 2 × 2 matrix, L, such that W + L =

  0 0

  0 0

 

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 32

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

   .................................................................................................................................

(1 mark)

  (ii) the 2 × 2 matrix, P, such that WP =

  1 0

 

  0 1

 .

   .................................................................................................................................

(2 marks)

 (b) A right-angled triangle, M, has vertices X(1, 1), Y(3, 1) and Z(3, 4).  When M is transformed 

  by the matrix N =

  0 1

  1 0

, the image is M′. 

  Find the coordinates of the vertices of M′. 

  ..............................................................................................................................................

(2 marks)

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 33

 (c) The diagram below shows triangle OPQ in which

OP

 = 3u and

OQ

 = v.  Q is the midpoint 

  of OR and M is the midpoint of PQ.  L is a point on OP such that OL =

2

GO ON TO THE NEXT PAGE

01234020/J/CSEC 2021

‘‘*’’Barcode Area”*”

Sequential Bar Code

3

OP.

Page 34

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

  (i) Write in terms of u and v, an expression for

   

    a) 

LM

    ...........................................................................................................................

(2 marks)

   b)

PR

.

    .................................................................................................................................

(1 mark)

  (ii) Prove that the points L, M and R are collinear.

   ..................................................................................................................................

(4 marks)

     Total 12 marks

END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 35

01234020/J/CSEC 2021

EXTRA SPACE

If you use this extra page, you MUST write the question number clearly in the box provided.

Question No.  

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 36

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

01234020/J/CSEC 2021

EXTRA SPACE

If you use this extra page, you MUST write the question number clearly in the box provided.

Question No.  

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 37

01234020/J/CSEC 2021

EXTRA SPACE

If you use this extra page, you MUST write the question number clearly in the box provided.

Question No.  

‘‘*’’Barcode Area”*”

Sequential Bar Code

Page 38

DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA      DO NOT WRITE IN THIS AREA  

01234020/J/CSEC 2021

DO  NOT

WRITE  ON

AGE

THIS  P

CANDIDATE’S   RECEIPT

INSTRUCTIONS TO CANDIDATE:

1. Fill in all the information requested clearly in capital letters.

 TEST CODE: 

0 1 2 3 4 0 2 0

 SUBJECT:               

 

 PROFICIENCY:               

 REGISTRATION NUMBER:   

MATHEMATICS – Paper 02

GENERAL

 FULL NAME:  ________________________________________________________________

 (BLOCK LETTERS)

 Signature:  ____________________________________________________________________

 Date:  ________________________________________________________________________

2. Ensure that this slip is detached by the Supervisor or Invigilator and given to you when you

hand in this booklet.

3. Keep it in a safe place until you have received your results.

INSTRUCTION TO SUPERVISOR/INVIGILATOR:

Sign the declaration below, detach this slip and hand it to the candidate as his/her receipt for this booklet

collected by you.

I hereby acknowledge receipt of the candidate’s booklet for the examination stated above.

 Signature:  _____________________________

                 Supervisor/Invigilator

 Date:  _________________________________